Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 168(2): 63, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637551

RESUMO

Influenza A virus (FLUAV) is a significant human pathogen. In silico structural analysis (PMID 28628827) has suggested that the FDA-approved drug paliperidone interferes with the binding of the FLUAV polymerase subunit PB2 to the nucleoprotein NP. We found that paliperidone inhibits FLUAV A/PR/8/34 early after infection of canine MDCK II, human A549, and human primary bronchial cells, but not at late time points. No effect was detectable against the strains A/Hamburg/05/2009 and A/WSN/33. Moreover, paliperidone indeed disturbed the interaction between the PB2 and the NP of A/PR/8/34 and reduced early viral RNA and protein synthesis by approximately 50%. Thus, paliperidone has measurable but transient and virus-strain-restricted effects on FLUAV.


Assuntos
Antivirais , Vírus da Influenza A , Palmitato de Paliperidona , Animais , Cães , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Nucleoproteínas , Palmitato de Paliperidona/farmacologia , RNA Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral , Células Madin Darby de Rim Canino , Células A549 , Antivirais/farmacologia
2.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203800

RESUMO

Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor ß/δ (PPARß/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARß/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARß/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARß/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARß/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARß/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARß/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARß/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Cardiotônicos/uso terapêutico , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , PPAR delta/metabolismo , PPAR beta/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Antioxidantes/metabolismo , Caderinas/metabolismo , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Catalase/metabolismo , Metabolismo Energético/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Ratos Wistar , Superóxido Dismutase/metabolismo , Tiazóis/administração & dosagem , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Proteína Desacopladora 3/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Nucleic Acids Res ; 48(18): 10397-10412, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946572

RESUMO

The RNA helicase RIG-I plays a key role in sensing pathogen-derived RNA. Double-stranded RNA structures bearing 5'-tri- or diphosphates are commonly referred to as activating RIG-I ligands. However, endogenous RNA fragments generated during viral infection via RNase L also activate RIG-I. Of note, RNase-digested RNA fragments bear a 5'-hydroxyl group and a 2',3'-cyclic phosphate. How endogenous RNA fragments activate RIG-I despite the lack of 5'-phosphorylation has not been elucidated. Here we describe an endogenous RIG-I ligand (eRL) that is derived from the internal transcribed spacer 2 region (ITS2) of the 45S ribosomal RNA after partial RNase A digestion in vitro, RNase A protein transfection or RNase L activation. The immunostimulatory property of the eRL is dependent on 2',3'-cyclic phosphate and its sequence is characterized by a G-quadruplex containing sequence motif mediating guanosine-5'-triphosphate (GTP) binding. In summary, RNase generated self-RNA fragments with 2',3'-cyclic phosphate function as nucleotide-5'-triphosphate binding aptamers activating RIG-I.


Assuntos
Proteína DEAD-box 58/genética , RNA Helicases/genética , RNA Ribossômico/genética , RNA/genética , Guanosina Trifosfato/genética , Humanos , Ligantes , Fosfatos/metabolismo , RNA/química , RNA Helicases/metabolismo , Receptores Imunológicos , Ribonucleases/genética
4.
mBio ; 10(5)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594810

RESUMO

Cellular sensing of bacterial RNA is increasingly recognized as a determinant of host-pathogen interactions. The intracellular pathogen Listeria monocytogenes induces high levels of type I interferons (alpha/beta interferons [IFN-α/ß]) to create a growth-permissive microenvironment during infection. We previously demonstrated that RNAs secreted by L. monocytogenes (comprising the secRNome) are potent inducers of IFN-ß. We determined the composition and diversity of the members of the secRNome and found that they are uniquely enriched for noncoding small RNAs (sRNAs). Testing of individual sRNAs for their ability to induce IFN revealed several sRNAs with this property. We examined ril32, an intracellularly expressed sRNA that is highly conserved for the species L. monocytogenes and that was the most potent inducer of IFN-ß expression of all the sRNAs tested in this study, in more detail. The rli32-induced IFN-ß response is RIG-I (retinoic acid inducible gene I) dependent, and cells primed with rli32 inhibit influenza virus replication. We determined the rli32 motif required for IFN induction. rli32 overproduction promotes intracellular bacterial growth, and a mutant lacking rli32 is restricted for intracellular growth in macrophages. rli32-overproducing bacteria are resistant to H2O2 and exhibit both increased catalase activity and changes in the cell envelope. Comparative transcriptome sequencing (RNA-Seq) analysis indicated that ril32 regulates expression of the lhrC locus, previously shown to be involved in cell envelope stress. Inhibition of IFN-ß signaling by ruxolitinib reduced rli32-dependent intracellular bacterial growth, indicating a link between induction of the interferon system and bacterial physiology. rli32 is, to the best of our knowledge, the first secreted individual bacterial sRNA known to trigger the induction of the type I IFN response.IMPORTANCE Interferons are potent and broadly acting cytokines that stimulate cellular responses to nucleic acids of unusual structures or locations. While protective when induced following viral infections, the induction of interferons is detrimental to the host during L. monocytogenes infection. Here, we identify specific sRNAs, secreted by the bacterium, with the capacity to induce type I IFN. Further analysis of the most potent sRNA, rli32, links the ability to induce RIG-I-dependent induction of the type I IFN response to the intracellular growth properties of the bacterium. Our findings emphasize the significance of released RNA for Listeria infection and shed light on a compartmental strategy used by an intracellular pathogen to modulate host responses to its advantage.


Assuntos
Fatores Imunológicos/metabolismo , Interferon beta/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/metabolismo , Macrófagos/microbiologia , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Listeria monocytogenes/genética , Camundongos Endogâmicos C57BL , RNA Bacteriano/genética , RNA Bacteriano/imunologia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...